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1 Introduction

Rapid advancements in electromechanical systems have revolutionized engineering and automation,
introducing magnetic levitation as a transformative development with applications in transportation
and precision manufacturing. This project focuses on employing PID and LQR controllers to
address the intricacies of electromechanical coupling in magnetic levitation systems. The objective
is precise control over the position of a suspended steel ball in a magnetic field, showcasing the
robust capabilities of these controllers for stable levitation. This promises advancements in stability,
efficiency, and precision across technological domains.

Acknowledging the challenges in precise control due to complex dynamics influenced by factors
like applied voltage and drive current, the project deems traditional control methods inadequate.
The adoption of PID and LQR controllers becomes imperative to enhance system performance.
The scope involves assessing these controllers for governing the magnetic levitation of a steel ball,
focusing on applied voltage, steel ball position, velocity, and drive current. The goal is to achieve
precise control of the ball’s position within the magnetic field, demonstrating stable levitation and
positioning. The project’s outcomes hold potential applications in transportation, manufacturing,
and robotics, contributing insights into practical controller implementation. Additionally, the project
includes modeling the magnetic levitation system as a Single Input Single Output (SISO) system,
incorporating dynamic equations and linearization around an operational point to align with control
theory principles.

2 Model of Magnetic Levitation System

To characterize a physical system as a Single Input Single Output (SISO) system, the initial step
involves identifying the system’s input and output. In this context, the input corresponds to the
applied current I, and the output is represented by the system’s position x. The modeling process
commences with the fundamental dynamic equation of motion, wherein gravitational forces Fg and
magnetic forces Fm play a role. Subsequently, linearization is applied—a common technique in
control theory—aimed at simplifying the equations of motion around an operational point denoted as
(xe, Ie).

2.1 Nonlinear Equations

The equation of motion describes the dynamics of the steel ball under the influence of gravity and
magnetic force.

mẍ = Fg − Fm = mg − KcI
2

x2
(1)



where respectively m,x, g, Fg, Fm, I , and Kc denote the mass of the steel-ball, its position, grav-
ity constant, gravitational force, magnetic force, applied driving current, and force constant of
electromagnet respectively. Based on equation (1), we can define a nonlinear function as

f(x, I) = g − KcI
2

mx2
(2)

Meanwhile, the dynamics of applied driving current can be denoted as

İ =
V

L
− IR

L
(3)

where consecutively R,L, and V are the resistance, inductance, and operating voltage.

Usually, the nonlinear system is expected to operate at an equilibrium point. In our case, we expect
that ẍ = 0, ẋ = 0, and İ = 0. Since ẍ and İ are zeros, it indicates that the magnetic and gravitational
force are equal. Hence, the steel-ball can be levitated at an equilibrium position.

Take a look back at equation (1), since Fg = Fm, we can calculate the applied driving current at the
equilibrium as

Ie = xe

√(
mgK−1

c

)
(4)

where respectively Ie and xe are the applied driving current and position of the steel-ball at the
equilibrium point. Furthermore, we can obtain the voltage at equilibrium point, Ve, as

Ve = IeRxe

√(
mgK−1

c

)
R. (5)

2.2 Linearization

We can obtain the linearized model of MLS by applying Taylor Series Expansion as

ẍ = c1 (x− xe) + c2 (I − Ie) , (6)

where

c1
∂f(x, I)

∂x

∣∣∣∣
x=xe,I=Ie

=
2KcI

2
e

mx3
e

and

c2
∂f(x, I)

∂I

∣∣∣∣
x=xe,I=Ie

=
2KcIe
mx2

e

Let the input u be the operating voltage Ve, then we can define the state space as

ẋ = Ax+Bu =

 0 1 0
c1 0 c2
0 0 −R

L

x+

 0
0
1
L

u, (7)

where the state vector be

x = [ x1 x2 x3 ]
⊤
.

The state variables are x1, x2, and x3 that respectively denote the position of the steel-ball, its velocity,
and drive current. Meanwhile, the output can be defined as

y = Cx = [ 1 0 0 ]x = x1. (8)
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3 Analysis of properties

The system’s stability is assessed by analyzing the eigenvalues of matrix A, revealing values of
44.2719, -44.2719, and -250.0000. With at least one eigenvalue having a positive real part (44.2719),
the system is deemed unstable. An unstable system implies unbounded output growth over time,
posing risks of system failure or unsafe conditions.

Controllability is evaluated using matrices A and B, and the controllability matrix ’co’ is computed.
The matrix rank is 3, matching the number of state variables in matrix A, indicating a controllable
system. Despite instability, the system can be driven to any desired condition with an appropriate
input.

Observability is determined through the observability matrix ’ob’ using matrices A and C. The
matrix rank is 3, signifying an observable system. Despite instability, the current state can be
determined in finite time using only the outputs. While the system is unstable, its full controllability
and observability suggest the potential for stabilization through controller design and state estimation
with an observer.

4 Results and Discussion

Here we present the results of this research, including the necessary parameters.

4.1 System Parameters

Before stepping any further, it is necessary to define the parameters of MLS that used in this research.
Those parameters can be seen in Table 1.

Table 1. Parameters of magnetic levitation system.

Parameters Values
m 0.008 kg
Kc 6.8823× 10−5Nm2 A−2

R 2.5ohm
L 0.01H

Simultaneously, we establish the steel-ball equilibrium position at xe = 0.01 m. Substituting these
values into equation(4) yields the driving current equilibrium point as Ie = 0.3375 A. Additionally,
equation(5) provides the operating voltage at equilibrium as Ve = 0.8538 V.

4.2 PID Controller

The PID continuously adjusts its output based on the information provided by the sensor, thus
modifying the electromagnetic field intensity influences the ball’s position. The paper presents the
basic theory revolving around the maglev system and PID controlling and then presents simulation
results of the system step response.

Applying the Laplace transform on linearized expression gives :

ms2X(s) = −
(
2Ci0
x2
0

)
I(s) +

(
2Ci20
x3
0

)
X(s) (9)

X(s)

(
ms2 − 2Ci20

x3
0

)
= −

(
2Ci0
x2
0

)
I(s)whichgives : (10)

X(s)

I(s)
=

−2Ci0
x2
0

ms2 − 2Ci20
x3
0

(11)

that is to say :

G(s) =
−
(

2ci0
mx2

0

)
s2 −

(
2ci20
mx3

0

) (12)

3



This expression of second order is obtained considering that X(s), the position of the ball, is the output
of the system and that I(s), the current fed to the electromagnet, is the input of it[9]. Considering the
equilibrium point (−1.5 V, 0.8 A),C = −0.69 and m = 0.02 kg, the following function is obtained
:

G(s) =
24, 5

s2 − 13
=

24, 5

(s− 3, 6)(s+ 3, 6)
(13)

This function has two poles and no zeros. One of the poles is in the right half plane which makes the
open loop unstable, the root locus is given at the figure below :

then the root locus is shown in the figure as

A PID controller is added to the system to ensure stability, the closed-loop is given at the figure below
: The system response is evaluated according to a step reference. The results are displayed on a
scope using the simulink application on Matlab. The tuning function is used to determine the PID
parameters :

On figure 5, the dotted response corresponds to the initial PID parameters, which are values chosen
to ensure stability but not performance. The full line corresponds to the tuned response

Controller Parameters
Tuned Block

p 11.2992 10
I 20.3355 10
D 1.5416 100
N 209.6701 100

Performance and Robustness
Tuned Block

Rise time 0.0335 seconds 0.00228 seconds
Settling time 0.605 seconds 0.0772 seconds
Overshoot 15.9% 72.7%

Peak 1.16 1.73
Gain margin −20.6 dB@3.63rad/s −25.5 dB@0.316rad/s
Phase margin 69deg@38.4rad/s 11.5deg@490rad/s

Closed-loop stability Stable Stable

The above table represents the Parameters of the PID

4.3 LQR Controller Design and Precompensator

In this section, we delve into the design of the control law and precompensator for the magnetic
levitation system. The challenge involves parameterization to attain a stable controller, and LQR
is utilized to address this issue. We offer a brief explanation of LQR and further elaborate on the
precompensator.

4.3.1 Linear-Quadratic Regulator

The Linear-Quadratic Regulator (LQR) is an optimal control strategy for SISO and MIMO systems,
ensuring robust stability. It excels in optimizing energy consumption, surpassing PID and fuzzy
controllers. Figure 4 depicts the block diagram of a full-state feedback controller using LQR.

In general, LQR has an objective function such as

J(u) =

∫ ∞

0

(
x⊤Qx+ u⊤Ru

)
dt (14)

that must be minimized. In MLS research, with three states and one input, Q ∈ R3×3 is a 3x3 matrix,
and R ∈ R is a scalar. Both Q and R impact gain feedback K differently; increasing Q leads to a
larger K, while a larger R results in a smaller K.Next, we need to calculate the auxiliary matrix S by
solving this Algebraic Ricatti Equation (ARE) where
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A⊤S+ SA− SBR−1B⊤S+Q = 0 (15)

It is necessary to determine the gain feedback K such as

K = R−1
(
B⊤S

)
(16)

4.3.2 Precompensator

Incorporating precompensator N̄ is crucial for zero steady-state errors. In practice, reference signal r
undergoes N̄ multiplication for an updated reference. Figure 4 illustrates the block diagram of the
state feedback controller with the precompensator.

There are some steps in order to calculate the precompensator. First, we need to find N as

N =

[
A B
C 0

]−1

Z (17)

where

Z = [ 0 0 0 1 ]
⊤ (18)

After obtaining N, we can partitioned it as

N =

[
α
β

]
(19)

where α ∈ R3×1 is a column vector, meanwhile β ∈ R is a scalar. Eventually, the precompensator
can be calculated as

N̄ = Kα+ β (20)

4.3.3 Analysis and properties of LQR

After parameter definition, we examine open-loop system stability. Substituting parameters from
Table 1, including gravity constant g = 9.8 m s−2, into state matrix A and input vector B yields:

A =

[
0 1 0

1960 0 −58.0717
0 0 −250

]
, (21)

B =

[
0
0
100

]
. (22)

To determine the open-loop system’s stability, we calculate the eigenvalues of A, resulting in the
eigenvector eig(A) = [44.2719,−44.2719,−250]

⊤. The presence of a real positive eigenvalue
indicates system instability.

To assess controllability, we calculate the rank of the controllability matrix. The controllability matrix,
denoted as Co, is defined as:

Co =
[
B AB A2B

]
(23)

Utilizing MATLAB, the rank of the controllability matrix Co, a 3-by-3 matrix corresponding to the
state variables, is found to be 3. The equality of its rank to the number of state variables confirms
system controllability.
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Moving forward, controller design using LQR necessitates parameter determination, including the
compression.

Q =

[
100 0 0
0 100 0
0 0 100

]
(24)

R = 1 (25)

With the parameters for C, B, Q, and R in place, the solution to the Algebraic Ricatti Equation in
equation(15) is obtained using MATLAB. This results in the determination of the auxiliary matrix as:

S =

[
6964 136.25 −7.3089
136.25 3.644 −0.193
−7.3089 −0.193 0.0884

]
(26)

Eventually, equation(16) can be solved and the feedback gain by:
K = [ −730.8898 −19.3003 8.8431 ] (27)

With the gain feedback obtained, closed-loop system stability is assessed similarly to
the open-loop system. Eigenvalues for the closed-loop system are eig(A − BK) =

[−1029.2,−24.3122,−80.7729]
⊤, confirming stability. Computation of the precompensator, N̄ =

−348.0447, is achieved by solving equations (17), (18), (19) and (20) and substituting parameters.

Proceeding to simulate the closed-loop system’s response, the initial states are set to x0 = [0, 0, 0]
⊤.

Initially, the steel ball is at rest with no driving current. The desired states, xd = [0.01, 0, 0.3375]
⊤,

represent the desired equilibrium. The MLS response with the state feedback controller and precom-
pensator is shown in Figure 3.

The response rapidly converges, evidenced by a rise time of 0.097 seconds and a settling time of
0.1766 seconds, with no steady-state errors. Figure 8 illustrates the dynamics of states x1, x2,
and x3 corresponding to xe, ẋe, and Ie. Initially stationary, the steel ball begins levitating with
the applied operating voltage. x2 increases until x1 ≈ xe, and to maintain x1 = xe, x2 must be
zero. Simultaneously, the driving current x3 rises until reaching equilibrium Ie, indicating achieved
equilibrium for xe as the driving current correlates with the steel ball’s position.

5 Conclusion

This project centered on optimizing the performance of a magnetic levitation system through model-
ing and control. Key findings encompassed successful system modeling, linearization at equilibrium
points, and the design of a Linear Quadratic Regulator (LQR) state feedback controller. A notable en-
hancement was the introduction of a precompensator to eliminate steady-state errors, ensuring precise
and stable control. Matlab simulations validated the design with impressive metrics, including a swift
0.097 seconds rise time, a settling time of 0.1766 seconds, and no overshoot. The precompensator
played a pivotal role in achieving zero steady-state errors.

Critical design decisions favored the adoption of an LQR state feedback controller for optimal
performance, and the precompensator addressed steady-state errors. Challenges arose from inherent
nonlinearities in the magnetic levitation system, prompting the ongoing refinement of the model to
capture real-world complexities.

The project emphasized the importance of linearization for simplifying complex systems in controller
design. Ongoing efforts involve refining the model to accommodate nonlinear elements, conducting
robustness analysis, and transitioning to experimental validation. This work aims to enhance the
accuracy, robustness, and real-world applicability of the magnetic levitation control system.
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6 Appendix

Figure 1: Schematics of Magnetic Levitation System with Free Body Diagram

Figure 2: Schematic diagram of the closed-loop system with PID

Figure 3: Step response of the closed-loop system

Figure 4: Block diagram of a state feedback controller with precompensator
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Figure 5: Step response with LQR and pre-compensator (for each states)

Figure 6: Root locus of system with PID controller

7 Code

1

2 % Clearing Workspace
3 clc; clear all;
4

5 % System Parameters
6 % Define physical parameters of the system , such as mass , constants ,

and gravity.
7 m = 0.008; % Mass (kg)
8 kc = 6.8828 * 10^-5; % Motor constant (Nm^2 A^-2)
9 Resis = 2.5; % Resistance (ohm)

10 L = 0.01; % Inductance (H)
11 xe = 0.01; % Displacement (m)
12 g = 9.8; % Acceleration due to gravity (m/s^2)
13

14 % Required Parameters for state matrices
15 Ie = xe * (m*g*kc^-1) ^(1/2); % Motor current
16 Ve = Ie*Resis; % Motor voltage
17

18 c1 = 2*kc*Ie*Ie/(m*xe^3); % Coefficient 1
19 c2 = -2*kc*Ie/(m*xe^2); % Coefficient 2
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20

21 % State Matrix
22 A = [0 1 0; c1 0 c2; 0 0 -1*Resis/L];
23 B = [0; 0; 1/L];
24 C = [1 0 0];
25 D = 0;
26

27 states = {’x’ ’x_dot ’ ’I’};
28 inputs = {’Ve’};
29 outputs = {’x’};
30

31 sys_ss = ss(A, B, C, D, ’statename ’, states , ’inputname ’, inputs , ’
outputname ’, outputs)

32

33 sys_tf = tf(sys_ss);
34

35 % LQR Controller Design
36 Q = [100 0 0; 0 100 0; 0 0 100]
37 p = 50
38 R = 1
39

40 [K, S, P] = lqr(sys_ss , Q, R)
41 Nbar = rscale(A, B, C, D, K)
42

43 sys1 = ss(A-B*K, B*Nbar , C, D);
44

45 C2 = [0 1 0];
46 C3 = [0 0 1];
47 sys_cl = ss(A-B*K, B*Nbar , C, D);
48 sys_cl2 = ss(A-B*K, B*Nbar , C2 , D);
49 sys_cl3 = ss(A-B*K, B*Nbar , C3 , D);
50

51 % System Response Analysis
52 poles = eig(A)
53

54 co = ctrb(sys_ss);
55 controllability = rank(co)
56

57 ob = obsv(A, C);
58 observability = rank(ob)
59

60 % Step Response Plotting
61 t = 0:0.001:1;
62 r = xe * ones(size(t));
63 subplot (3,1,1);
64 [y, t, x] = lsim(sys_cl , r, t);
65 plot(t, y, ’-’);
66 yline (0.01, ’r--’, ’LineWidth ’, 2);
67 grid on;
68 legend(’x’, ’Reference line’);
69 title(’Step Response with LQR Control for x (Team 6)’);
70 xlabel(’Time’);
71 ylabel(’x’);
72

73 t = 0:0.001:1;
74 r = xe * ones(size(t));
75 subplot (3,1,2);
76 [y, t, x] = lsim(sys_cl2 , r, t);
77 plot(t, y, ’-’);
78 yline(0, ’r--’, ’LineWidth ’, 2);
79 grid on;
80 legend(’x_d’, ’Reference line’);
81 title(’Step Response with LQR Control for x_d (Team 6)’);
82 xlabel(’Time’);
83 ylabel(’x_d’);
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84

85 t = 0:0.001:1;
86 r = xe * ones(size(t));
87 subplot (3,1,3);
88 [y, t, x] = lsim(sys_cl3 , r, t);
89 plot(t, y, ’-’);
90 yline (0.3375 , ’r--’, ’LineWidth ’, 2);
91 grid on;
92 legend(’I’, ’Reference line’);
93 title(’Step Response with LQR Control for I (Team 6)’);
94 xlabel(’Time’);
95 ylabel(’I’);
96

97 % Functions
98

99 function [Nbar] = rscale(a, b, c, d, k)
100 % rscale: Compute the scale factor Nbar for eliminating steady -

state error.
101 % For a continuous -time , single -input system with full -state

feedback:
102 % dx/dt = Ax + Bu
103 % y = Cx + Du
104 % and feedback matrix K, the function computes Nbar to eliminate
105 % steady -state error for a step reference input.
106

107 error(nargchk(2, 5, nargin));
108

109 % Determine which syntax is being used
110 nargin1 = nargin;
111 if (nargin1 == 2) % System form
112 [A, B, C, D] = ssdata(a);
113 K = b;
114 elseif (nargin1 == 5) % A, B, C, D matrices
115 A = a; B = b; C = c; D = d; K = k;
116 else
117 error(’Input must be of the form (sys , K) or (A, B, C, D, K)’)
118 end
119

120 % Compute Nbar
121 s = size(A, 1);
122 Z = [zeros ([1, s]) 1];
123 N = inv([A, B; C, D]) * Z’;
124 Nx = N(1:s);
125 Nu = N(1 + s);
126 Nbar = Nu + K * Nx;
127 end

Listing 1: Your MATLAB code
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Figure 7: Result1
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Figure 8: Result2

Figure 9: Result3
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Figure 10: PID Simulink
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